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New fabrication techniques can enable new materials 
and processes to achieve low-cost carbon capture. 
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FEW0194: Advanced Manufacturing To Enable Enhanced 
Processes And New Solvents For Carbon Capture 

$4.15M over 3 years (April 15, 2015 – April 14, 2018)

Rapid determination of 
solvent properties via 
microfluidic reactors

$133k/yr

Process design and scaleup with 
microcapsules

$475k/yr

Encapsulation of Advanced 
Solvents

$475k/yr

CO2 absorber design with 
advanced manufacturing

$250k/yr
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Some solvents with potential for 30—50% energy 
savings and specific challenges:

1. Sodium carbonate solution: slow CO2
absorption, precipitates solids.

2. Ionic Liquids: water intolerance, 
precipitate solids (PCIL’s)

3. NOHMs: high viscosity, slow 
CO2 absorption.

4. CO2BOLs: poor heat transfer rates 
(high viscosity).



Can packed towers be improved?

Raschig rings: 
“Since 1894”

Structured packing: 
“A little better”

Process intensification 
limited by film thickness

… and fabrication technology?



Additional surface area can be formed by 
permeable solids.
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Microencapsulation: an enabling technology 
for CO2 solvents.  



Major challenges for encapsulation:

• Shell material-solvent compatibility

• Microfluidic-solvent compatibility

• Production scale-up

• Process design and evaluation



Click to edit Master subtitle style
Name Manufac-

turer Material
Permea-

bility
(barrer) 

Amine 
Compati-

bility

Mecha-
nical

Properties

Curing 
Time

Semicosil
949 Wacker Silicone 3100 No

Elastic, 
strong, 
tacky

30 mins

Thiol-ene LLNL Silicone 2700 Yes
Elastic, 
strong, 
tacky

30 secs

SiTRIS
(80:20) LLNL Acrylic 400 After 

curing

Stiff, 
strong, 
untacky

10 secs

Tego Rad 
2650 Evonik Silicone 3200 After 

curing

Elastic, 
friable, 
untacky

10 secs

We now have four permeable shell materials 
(two formulated in-house).
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1

Koech-
anol

Koech-
anol w/
1:1 wt.
water

DBU/He
x-anol
1:1

NDIL
0274

NDIL
0252

NDIL
0231

NDIL
0231 w/
1:1 wt. 
water

NDIL
0230

NDIL
0230 w/ 
1:1 wt. 
water

NDIL
0309
(solid)

NDIL
0309 w/ 
1:1 wt. 
water

Carbon-
ate w/ 
water

Semi-
cosil X X √

Thiol-
ene √ √ √

Si-TRIS √ √ 
w/ 1:3 √

T.R. 
2650

√ (un-
stable) √

Extensive screening indicates viable candidates 
for encapsulation. Good properties for 

encapsulation
Marginal properties 
for encapsulation

Not compatible
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IL-SiTRIS
capsules
dried and tested 
for CO2
absorption

1
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Microcapsule production scaled up by parallelization.

→ 500 g/day



Alternative scale-up technique: 2-part production

Inner phase: DI water 500 ul/h
Outer phase: HFE 7500 w/ 1 wt.% Krytox

Inner phase: DI water 500 ul/h
Middle phase: HFE 7500 w/ 1 wt.% Krytox 500 ulh
Outer phase: DI water w/ 1 wt.% Triton-X100 1000 ulh

Device 1 - hydrophobic Device 2 - hydrophilic
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We used 3D printing to rapidly prototype microfluidic 
devices 

3D-printed master

8-channel device in PDMS



Capsules doped 
with magnetic 
nanoparticles
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New reactor concepts
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Sorbent-polymer Composites

 Carbonate particles embedded within a CO2 permeable polymer 
(silicones)

 Composited will capture water and swell

Polymer-Carbonate
Composite Water Hydrated Polymer-Carbonate

Composite



3D Printed Composites

CO2

 Shear-thinning polymer allows for 
Direct Ink Write (DIW) of composites

 Can include color indicating dyes 
to identify CO2 loading



The Breath Test



Geometries can be optimized for gas flow 
and reactor shape

Simple Cubic Radial Simple Cubic Face Centered Tetragonal



Geometry affects mass 
transfer and pressure 

drop. 
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Smaller struts yield higher absorption rates.
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Tube-lattice reactors expand the process options.



Microfluidic determination of solvent properties:  
New “snapshot” approach

930

Bubble volume vs. 
distance traveled

⇒ CO2 absorbed 
vs. time



Microfluidics used to characterize 
amino acid-based solvents.

Potassium lysinate
outperforms MEA

Microfluidic CSTR

Comparative microfluidic screening of amino acid salt solutions for post-combustion CO2 capture, 
International Journal of Greenhouse Gas Control, Volume 43, Pages 189–197 (2015). 
http://dx.doi.org/10.1016/j.ijggc.2015.10.026

MEA

MEA

K-LysK-Lys

Results consistent 
with CSTR.

http://dx.doi.org/10.1016/j.ijggc.2015.10.026
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