Advanced Manufacturing To Enable New Solvents and Processes For Carbon Capture

August 10, 2016 NETL CO₂ Capture Technology Meeting

Joshuah K. Stolaroff

Lawrence Livermore National Laboratory

Carnegie Mellon University

HARVARD UNIVERSITY

LLNL-PRES-555917

This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344. Lawrence Livermore National Security, LLC

New fabrication techniques can enable new materials and processes to achieve low-cost carbon capture.

FEW0194: Advanced Manufacturing To Enable Enhanced Processes And New Solvents For Carbon Capture
\$4.15M over 3 years (April 15, 2015 – April 14, 2018)

Process design and scaleup with microcapsules \$475k/yr

CO₂ absorber design with advanced manufacturing \$250k/yr

Tasks

Rapid determination of solvent properties via microfluidic reactors \$133k/yr

Project Team

Lawrence Livermore National Laboratory Joshuah K. Stolaroff, Congwang Ye, Du Nguyen, Sarah E. Baker, William L. Smith, James S. Oakdale, Eric B. Duoss, Bill Bourcier, Pratanu Roy, Christopher M. Spadaccini, and Roger D. Aines

Carnegie Mellon University

John Kitchen Elif Erdinc

Collaborators

Pacific Northwest NATIONAL LABORATORY **David Heldebrant**

Imperial College London

Camille Petit

Alissa Park

Spray-Tek

Jiten Dihora

Some solvents with potential for 30—50% energy savings and specific challenges:

1. Sodium carbonate solution: slow CO_2 absorption, precipitates solids.

2. **Ionic Liquids**: water intolerance, precipitate solids (PCIL's)

3. **NOHMs**: high viscosity, slow CO_2 absorption.

4. **CO₂BOLs**: poor heat transfer rates (high viscosity).

Can packed towers be improved?

Raschig rings: "Since 1894"

Structured packing: "A little better"

1 mm

←Process intensification limited by film thickness ... and fabrication technology?

Additional surface area can be formed by permeable solids.

✓ Also tolerates phase changes!

Microencapsulation: an enabling technology for CO_2 solvents.

Major challenges for encapsulation:

- Shell material-solvent compatibility
- Microfluidic-solvent compatibility
- Production scale-up
- Process design and evaluation

We now have four permeable shell materials (two formulated in-house).

Name	Manufac- turer	Material	Permea- bility (barrer)	Amine Compati- bility	Mecha- nical Properties	Curing Time
Semicosil 949	Wacker	Silicone	3100	No	Elastic, strong, tacky	30 mins
Thiol-ene	LLNL	Silicone	2700	Yes	Elastic, strong, tacky	30 secs
SiTRIS (80:20)	LLNL	Acrylic	400	After curing	Stiff, strong, untacky	10 secs
Tego Rad 2650	Evonik	Silicone	3200	After curing	Elastic, friable, untacky	10 secs

Extensive screening indicates viable candidates for encapsulation. Good properties for Marginal properties Not compatible

						encapsulation						
	Koech- anol	Koech- anol w/ 1:1 wt. water	DBU/He x-anol 1:1	NDIL 0274	NDIL 0252	NDIL 0231	NDIL 0231 w/ 1:1 wt. water	NDIL 0230	NDIL 0230 w/ 1:1 wt. water	NDIL 0309 (solid)	NDIL 0309 w/ 1:1 wt. water	Carbon- ate w/ water
Semi- cosil							х		x			v
Thiol- ene		V									v	v
Si-TRIS		i					v		v v/ 1:3			v
T.R. 2650		√ (un- stable)										v

IL-SiTRIS capsules dried and tested for CO₂ absorption

Enhanced absorption rate compared to liquid film is confirmed.

Microcapsule production scaled up by parallelization.

$ightarrow 500 \ g/day$

Alternative scale-up technique: 2-part production

Device 1 - hydrophobic

Device 2 - hydrophilic

Inner phase: DI water 500 ul/h Outer phase: HFE 7500 w/ 1 wt.% Krytox Inner phase: DI water 500 ul/h Middle phase: HFE 7500 w/ 1 wt.% Krytox 500 ulh Outer phase: DI water w/ 1 wt.% Triton-X100 1000 ulh

Alternative scale-up technique: 2-part production

Device 1 - hydrophobic

Device 2 - hydrophilic

Inner phase: DI water 500 ul/h Outer phase: HFE 7500 w/ 1 wt.% Krytox Inner phase: DI water 500 ul/h Middle phase: HFE 7500 w/ 1 wt.% Krytox 500 ulh Outer phase: DI water w/ 1 wt.% Triton-X100 1000 ulh

We used 3D printing to rapidly prototype microfluidic devices

Capsules doped with magnetic nanoparticles

Capsules doped with magnetic nanoparticles

New reactor concepts

Sodium carbonate: supercritical CO₂ without a compressor

Swing capacity depends on release pressure.

Sorbent-polymer Composites

- Carbonate particles embedded within a CO₂ permeable polymer (silicones)
- Composited will capture water and swell

Polymer-Carbonate Composite

3D Printed Composites

- Shear-thinning polymer allows for Direct Ink Write (DIW) of composites
 - Can include color indicating dyes to identify CO₂ loading

The Breath Test

Geometries can be optimized for gas flow and reactor shape

Simple Cubic

Radial Simple Cubic

Face Centered Tetragonal

Smaller struts yield higher absorption rates.

Tube-lattice reactors expand the process options.

Microfluidic determination of solvent properties: New "snapshot" approach

 \Rightarrow CO₂ absorbed vs. time

Microfluidics used to characterize amino acid-based solvents.

*Comparative microfluidic screening of amino acid salt solutions for post-combustion CO*₂ *capture,* International Journal of Greenhouse Gas Control, Volume 43, Pages 189–197 (2015). http://dx.doi.org/10.1016/j.ijggc.2015.10.026

Acknowledgements

Lynn Brickett Andy Aurelio

Laboratory Directed Research and Development

Questions